The Crystal Structure of (-) -Ephedrine Dihydrogen Phosphate

By RichardA.Hearn and Charles E.Bugg
Institute of Dental Research and Department of Biochemistry, University of Alabama Medical Center, University of Alabama in Birmingham, 1919 Seventh Avenue South, Birmingham, Alabama 35233, U.S.A.

(Received 20 April 1972)

Abstract

Crystals of the phosphoric acid salt of (-)-ephedrine are monoclinic, space group $C 2$, with $a=14.738$ (4), $b=5 \cdot 710(6), c=15 \cdot 302$ (4) \AA, and $\beta=97 \cdot 17$ (2) ${ }^{\circ}$. There are four $\mathrm{C}_{10} \mathrm{H}_{16} \mathrm{NO} . \mathrm{H}_{2} \mathrm{PO}_{4}$ ion pairs in the unit cell. The calculated and observed densities are 1.368 and $1.37 \mathrm{~g} \mathrm{~cm}^{-3}$, respectively. By use of 1180 reflections measured on an X-ray diffractometer, the crystal structure was solved by the heavy-atom method and was refined by least-squares to $R=0.026$. The conformation of the ephedrine cation is in agreement with that found in the crystal structure of ephedrine hydrochloride. The dihydrogen phosphate anions are joined by short hydrogen bonds to form continuous phosphate sheets that lie parallel to the $a b$ plane. The sheets of phosphate ions are hydrogen-bonded to the ethanolamine moieties of the ephedrine cations. Similar phosphate interactions may be of importance in biological mineralization processes.

Introduction

We are currently investigating the structures of phosphate salts of peptides to gather information about the possible factors governing the binding of phosphate minerals to protein matrices (Freeman, Hearn \& Bugg, 1972). During bone formation, phosphate salts are deposited in collagenous matrices (Glimcher, Francois, Richards \& Krane, 1964; Glimcher, Krane, 1964), and several studies have indicated that the lysine and hydroxylysine residues of collagen may play an important role in the collagen-mineral interactions (Schiffman, Martin \& Miller, 1970; Glimcher \& Krane, 1968). Since lysine and hydroxylysine residues possess protonated amino groups at physiological $p \mathrm{H}$ levels, these amino acids might provide sites for binding phosphate ions. Examination of space-filling models suggests that hydroxylysine, by utilizing its terminal β-ethanolamine moiety, might provide an especially effective site for hydrogen bonding to phosphate ions. We determined the crystal structure of the phosphoric acid salt of (-)-ephedrine (a β-ethanolamine) in order to examine phosphate interactions with the ethanolamine moiety.

Experimental

Ephedrine phosphate, isolated by lyophilizing an aqueous solution containing equimolar quantities of ephedrine and phosphoric acid, was crystallized by slowly cooling a hot, saturated, aqueous ethanol solution. Two types of crystals were obtained: monoclinic needles and orthorhombic plates. Density measurements and elemental analyses showed that the ephedrine: phosphoric-acid molar ratio is $1: 1$ for the needles and $2: 1$ for the plates. The needles were used for the structure analysis reported here.

Weissenberg and oscillation photographs showed the
crystals to be monoclinic. Space groups $C 2, C m$ and $C 2 / m$ are indicated by the systematic absence of reflections $h k l$ with $h+k=2 n+1$; since ephedrine is optically active, we presumed that the space group is $C 2$. A section with approximate dimensions $0.3,0.2$ and 0.1 mm was cut from one of the larger needles and then mounted on a Picker FACS-1 diffractometer with its b axis (the needle axis) slightly inclined to the φ axis of the diffractometer. Approximate cell parameters for use in collection of intensity data were calculated by a least-squares analysis of the angular setting for 8 low angle $\mathrm{Cu} K \alpha(\lambda=1.5418 \AA)$ reflections.

Intensity data were collected with the diffractometer, using a scintillation counter, nickel-filtered copper radiation ($\lambda=1.5418 \AA$), and a $\theta-2 \theta$ scanning technique. A scan rate of $0.5^{\circ} / \mathrm{min}$ was used and the background was counted for 20 sec at each terminus of the scans. Measurements were made for the 1180 reflections with $2 \theta<128^{\circ}$. All reflections were considered observable. Intensity values were assigned variances, $\sigma^{2}(I)$, according to the statistics of the scan and background counts plus an additional term $(0 \cdot 03 S)^{2}, S$ being the scan counts. The intensities and their variances were corrected for Lorentz and polarization factors, and absorption corrections were applied by use of the program $O R A B S$ (Wehe, Busing \& Levy, 1962). Structure factors and variances were placed on an approximately absolute scale by means of a Wilson plot (Wilson, 1942).

Immediately after data collection, accurate values for the cell parameters were obtained by a least-squares analysis of 2θ values for 15 high angle α_{1} reflections ($\lambda=1.54051 \AA$) measured with the diffractometer. Crystal data are listed in Table 1.

The x and z coordinates for the phosphorus atom were obtained from a sharpened, three-dimensional Patterson map; since $C 2$ is a polar space group, the y

Table 1. Crystal data

The unit-cell parameters were measured at $25 \pm 3^{\circ} \mathrm{C}$. The reported standard deviations are five times those obtained from the least-squares analysis. The density was measured by flotation in a mixture of benzene and ethylene dibromide.

Stoichiometry	$\mathrm{C}_{10} \mathrm{H}_{16} \mathrm{NO} . \mathrm{H}_{2} \mathrm{PO}_{4}$
Z	4
Space group	$C 2$
a	$14.738(4) \AA$
b	$5.710(6)$
c	$15.302(4)$
β	$97.17(2)^{\circ}$
ϱ (calculated)	$1.368 \mathrm{g.cm}^{-3}$
ϱ (observed)	1.37
μ	$20.4 \mathrm{~cm}^{-1}$

coordinate for one atom can be arbitrarily assigned, and we let $y=0.20$ for the phosphorus atom. A Fourier map was calculated by use of phase angles derived from the phosphorus atom. Although this map contained a false mirror plane through the phosphorus atom, we had little difficulty selecting a suitable set of phosphate oxygen atoms. The remaining nonhydrogen atoms were located in a Fourier map calculated with phase angles derived from the phosphate anion. The trial structure was improved initially by several cycles of block-diagonal least-squares, during which the y coordinate of the phosphorus atom refined to a value of 0.2093 .

At this stage, the y coordinate of the phosphorus atom was fixed, and the refinement was continued by use of a modified version of the full-matrix leastsquares program ORFLS (Busing, Martin \& Levy, 1962). The quantity minimized was $\sum w\left[F_{o}^{2}-\left(1 / k^{2}\right) F_{c}^{2}\right]^{2}$, where k is a scale factor and the weight w is equal to $\left[1 / \sigma\left(F_{o}^{2}\right)\right]^{2}$. Atomic scattering factors for the nonhydrogen atoms, as well as the real and imaginary anomalous dispersion corrections for phosphorus and oxygen, were from International Tables for X-ray Crystallography (1962). Hydrogen scattering factors were from

Stewart, Davidson \& Simpson (1965). Hydrogen atoms were located in a difference Fourier map calculated during the final stages of refinement. We refined all positional parameters, anisotropic temperature parameters for the nonhydrogen atoms, isotropic temperature factors for the hydrogen atoms, and Zachariasen's (1963) extinction parameter g (as formulated by Coppens \& Hamilton, 1970). Heavy and hydrogen atoms were refined in alternate cycles. The final R index, ($\left.\sum\left|\left|F_{o}\right|-\left|F_{c}\right|\right| / \sum\left|F_{o}\right|\right)$, for all reflections is 0.026 ; the goodness-of-fit, $\left\{\sum\left[1 / \sigma^{2}\left(F_{o}^{2}\right)\right]\left(F_{o}^{2}-F_{c}^{2} / k^{2}\right)^{2} /(m-s)\right\}^{1 / 2}$, is $1 \cdot 81$. During the final cycle of refinement no parameter shifted more than one-fifth of its standard deviation. A final difference Fourier map showed no peaks or troughs exceeding 0.2 e. \AA^{-3} in magnitude.

At the conclusion of refinement, the coordinates were inverted and the structure of the enantiomer $[(+)$-ephedrine] was refined. The enantiomer refined to $R=0.027$, and a goodness-of-fit of 1.86 .

Results

The nonhydrogen atom parameters and their standard deviations are listed in Table 2; the average estimated standard deviations in these positional parameters range from 0.0015 to $0.004 \AA$. The hydrogen atom parameters and their standard deviations are given in Table 3; the estimated errors in the hydrogen-atom positional parameters range from 0.03 to $0.06 \AA$. Table 4 lists observed and calculated structure factors.

Fig. 1 shows the conformation of the ephedrine cation, including the ellipsoids of thermal vibration (Johnson, 1965). Bond lengths are given in Table 5 and bond angles in Table 6. The conformation and the bond lengths and angles of ephedrine are in agreement with those found in the crystal structure of ephedrine hydrochloride (Bergin, 1971); the major discrepancy between this structure and the hydrochloride is a difference of 47° in the torsion angle about the $\mathrm{C}(7)-\mathrm{O}(11)$

Table 2. The final heavy-atom parameters and their standard deviations
All values have been multiplied by 10^{4}. The temperature factors are in the form $T=\exp \left(-\beta_{11} h^{2}-\beta_{22} k^{2}-\beta_{33} l^{2}-2 \beta_{12} h k-2 \beta_{13} h l-2 \beta_{23} k l\right)$.

	x	y	z	β_{11}	β_{22}	β_{33}	β_{12}	β_{13}	β_{23}
P	1391 (1)	2093	405 (1)	24 (1)	253 (2)	28 (1)	-3(1)	3 (1)	6 (1)
O(P1)	942 (1)	1359 (4)	-485 (1)	28 (1)	409 (8)	30 (1)	-1 (2)	3 (1)	-27(2)
O(P2)	1590 (1)	4809 (4)	409 (1)	44 (1)	251 (7)	41 (1)	3 (2)	5 (1)	0 (2)
O(P3)	734 (1)	1848 (5)	1120 (1)	32 (1)	443 (8)	31 (1)	-21 (3)	5 (1)	-5 (2)
O (P4)	2267 (1)	837 (4)	726 (1)	30 (1)	277 (6)	41 (1)	9 (2)	0 (1)	5 (2)
C(6)	2177 (2)	7795 (5)	3797 (2)	52 (1)	272(10)	42 (1)	-14 (3)	5 (1)	-4 (3)
C(5)	1742 (2)	7913 (6)	4549 (2)	57 (2)	356 (12)	44 (1)	0 (3)	8 (1)	-33 (3)
C(4)	1162 (2)	6155 (7)	4738 (2)	41 (1)	482 (13)	41 (1)	73 (4)	8 (1)	-10 (4)
C(3)	1017 (2)	4259 (7)	4181 (2)	39 (1)	438 (13)	55 (2)	-26 (4)	12 (1)	2 (4)
C(2)	1450 (2)	4138 (6)	3430 (2)	42 (1)	331 (10)	46 (1)	25 (3)	5 (1)	-16(3)
C(1)	2041 (2)	5884 (5)	3234 (2)	35 (1)	271 (8)	33 (1)	-2 (3)	-2 (1)	1 (3)
C(7)	2534 (2)	5668 (5)	2429 (2)	40 (1)	289 (10)	30 (1)	-15(3)	0 (1)	1 (3)
$\mathrm{O}(1)$	2852 (1)	7872 (4)	2150 (1)	57 (1)	309 (8)	39 (1)	-8(2)	3 (1)	33 (2)
C(8)	3367 (2)	4032 (5)	2604 (2)	40 (1)	269 (9)	30 (1)	-9 (3)	2 (1)	16 (2)
N(12)	3643 (1)	3316 (5)	1727 (1)	31 (1)	264 (7)	33 (1)	-11(2)	3 (1)	4 (2)
C(9)	4464 (2)	1813 (7)	1744(2)	41 (1)	334 (11)	54 (1)	15 (4)	5 (1)	18 (4)
$\mathrm{C}(10)$	4165 (2)	5147 (7)	3177 (2)	46 (1)	451 (13)	37 (1)	-11(4)	-8(1)	-8(3)

Table 3. The final hydrogen atom parameters and their estimated standard deviations
The positional parameters have been multiplied by 10^{3}.

	x	y	z	$B\left(\AA^{2}\right)$
H(OP2)	$213(2)$	$509(8)$	$003(2)$	$7 \cdot 3(1 \cdot 0)$
H(OP3)	$032(2)$	$181(9)$	$097(2)$	$7 \cdot 5(0 \cdot 9)$
$\mathrm{H}(11)$	$249(3)$	$803(10)$	$169(3)$	$9 \cdot 3(1 \cdot 2)$
$\mathrm{H}(21)$	$138(2)$	$269(6)$	$307(2)$	$4 \cdot 9(0 \cdot 7)$
$\mathrm{H}(31)$	$062(2)$	$292(6)$	$432(2)$	$4 \cdot 4(0 \cdot 6)$
$\mathrm{H}(41)$	$086(2)$	$632(8)$	$529(2)$	$5 \cdot 9(0 \cdot 7)$
$\mathrm{H}(51)$	$184(2)$	$909(7)$	$488(2)$	$6 \cdot 1(0 \cdot 8)$
$\mathrm{H}(61)$	$255(2)$	$890(6)$	$367(2)$	$5 \cdot 1(0 \cdot 7)$
$\mathrm{H}(71)$	$210(2)$	$486(5)$	$196(2)$	$3 \cdot 3(0 \cdot 5)$
$\mathrm{H}(81)$	$320(2)$	$250(5)$	$290(2)$	$3 \cdot 8(0 \cdot 6)$
$\mathrm{H}(91)$	$445(2)$	$056(7)$	$211(2)$	$6 \cdot 7(0 \cdot 9)$
$\mathrm{H}(92)$	$502(2)$	$266(8)$	$192(2)$	$7 \cdot 7(1 \cdot 0)$
$\mathrm{H}(93)$	$460(2)$	$139(7)$	$110(2)$	$6 \cdot 2(0 \cdot 8)$
$\mathrm{H}(101)$	$394(2)$	$589(7)$	$371(2)$	$5 \cdot 5(0 \cdot 7)$
$\mathrm{H}(102)$	$465(2)$	$407(6)$	$336(2)$	$5 \cdot 4(0 \cdot 7)$
$\mathrm{H}(103)$	$446(2)$	$658(9)$	$289(2)$	$7 \cdot 4(0 \cdot 9)$
$\mathrm{H}(121)$	$316(2)$	$250(6)$	$142(2)$	$4 \cdot 6(0 \cdot 6)$
$\mathrm{H}(122)$	$381(2)$	$459(6)$	$141(1)$	$5 \cdot 2(0 \cdot 7)$

bond. The $\mathrm{N}(12) \cdots \mathrm{O}(11)$ distance of $2 \cdot 96 \AA$ is only $0.08 \AA$ longer than that found for the hydrochloride. As expected, the phenyl ring is planar within experimental error and has no heavy atom deviations exceeding $0.007 \AA$. Atom $C(7)$ is displaced $0.05 \AA$ from the phenyl plane.

Table 5. Bond distances
The standard deviations in bond lengths involving only nonhydrogen atoms are about $0.005 \AA$. The standard deviations in bond lengths involving hydrogen atoms are about $0.06 \AA$.

\quadBond	Distance	Bond	Distance
$\mathrm{P}-\quad \mathrm{O}(\mathrm{P} 1)$	$1.498 \AA$	$\mathrm{C}(7)-\mathrm{H}(71)$	$1.01 \AA$
$\mathrm{P}-\mathrm{O}(\mathrm{P} 2)$	1.578	$\mathrm{C}(8)-\mathrm{H}(81)$	1.03
$\mathrm{P}-\mathrm{O}(\mathrm{P} 3)$	1.555	$\mathrm{~N}(12)-\mathrm{H}(121)$	0.93
$\mathrm{P}-\mathrm{O}(\mathrm{P} 4)$	1.505	$\mathrm{~N}(12)-\mathrm{H}(122)$	0.93
$\mathrm{C}(5)-\mathrm{C}(6)$	1.387	$\mathrm{C}(6)-\mathrm{H}(61)$	0.87
$\mathrm{C}(6)-\mathrm{C}(1)$	1.389	$\mathrm{C}(5)-\mathrm{H}(51)$	0.85
$\mathrm{C}(5)-\mathrm{C}(4)$	1.373	$\mathrm{C}(4)-\mathrm{H}(41)$	1.01
$\mathrm{C}(3)-\mathrm{C}(4)$	1.379	$\mathrm{C}(3)-\mathrm{H}(31)$	1.00
$\mathrm{C}(2)-\mathrm{C}(3)$	1.384	$\mathrm{C}(2)-\mathrm{H}(21)$	0.99
$\mathrm{C}(1)-\mathrm{C}(2)$	1.382	$\mathrm{O}(11)-\mathrm{H}(11)$	0.85
$\mathrm{C}(1)-\mathrm{C}(7)$	1.512	$\mathrm{C}(10)-\mathrm{H}(101)$	1.01
$\mathrm{C}(7)-\mathrm{O}(11)$	1.427	$\mathrm{C}(10)-\mathrm{H}(102)$	0.95
$\mathrm{C}(7)-\mathrm{C}(8)$	1.539	$\mathrm{C}(10)-\mathrm{H}(103)$	1.05
$\mathrm{C}(8)-\mathrm{C}(10)$	1.506	$\mathrm{C}(9)--\mathrm{H}(91)$	0.91
$\mathrm{C}(9)-\mathrm{N}(12)$	1.481	$\mathrm{C}(9)-\mathrm{H}(92)$	0.96
$\mathrm{C}(8)-\mathrm{N}(12)$	1.506	$\mathrm{C}(9)-\mathrm{H}(93)$	1.07
		$\mathrm{O}(\mathrm{P} 2)-\mathrm{H}(\mathrm{OP} 2)$	1.06
		$\mathrm{O}(\mathrm{P} 3)-\mathrm{H}(\mathrm{OP} 3)$	0.63

Fig. 2 depicts the crystal packing. The hydrophobic phenyl and methyl groups are clustered in the central region of the unit cell, and the polar amino, hydroxyl, and phosphate moieties are arranged in layers parallel to the $a b$ plane. Thus the structure consists of alternating hydrophobic and polar layers, with the hydrophobic

Table 4. Observed and calculated structure factors
From left to right, the columns contain values of $h, 10 F_{o}$ and $10 F_{c}$.

 $\rightarrow \rightarrow$ 为

Fig. 1. The conformation of the ephedrine cation. The heavy atoms are represented by ellipsoids defined by the principal axes of thermal vibration and scaled to include 50% probability. The hydrogen atoms are represented by spheres of $0 \cdot 1 \AA$ radius.
portions sandwiched between polar regions. Fig. 2 also shows the hydrogen bonding scheme. Hydrogen bond lengths and angles are given in Table 7. All hydrogen atoms covalently bonded to oxygen or nitrogen atoms participate in hydrogen bonding. The nitrogen and oxygen atoms of the ethanolamine moiety donate hydrogen bonds to phosphate oxygen atoms. The two phosphate hydrogen atoms are utilized in phosphatephosphate hydrogen bonding. Phosphate anions are hydrogen bonded around twofold rotation axes to form dimers that involve two short ($2.55 \AA$) hydrogen
bonds (Fig. 2). The second phosphate hydrogen atom is involved in hydrogen bonding between phosphate dimers. The phosphate-phosphate hydrogen bonding results in cohesive, continuous sheets of phosphate ions running parallel to the $a b$ plane. Fig. 3 depicts hydrogen bonding within these sheets.

Discussion

An outstanding feature of this crystal structure is the aggregation of phosphate anions, leading to the formation of continuous phosphate sheets, wherein an extensive system of hydrogen bonds connects the phosphates. Each phosphate forms a total of four hydrogen bonds to three adjacent phosphates. The exceptional shortness (2.55 and $2.63 \AA$) of the phosphate-phosphate hydrogen bonds is suggestive of strong interactions between neighboring phosphate anions. The importance of phosphate-phosphate hydrogen bonding has been stressed previously (Phillippot \& Lindqvist, 1971; Calleri \& Speakman, 1964). The literature contains numerous examples of crystal structures in which hydrogen phosphates are joined by short ($<2.65 \AA$) hydrogen bonds (Smith, Brown \& Lehr, 1955; Iitaka \& Huse, 1965; Huse \& Iitaka, 1969; Philippot \& Lindqvist, 1971; Sundaralingam \& Putkey, 1970; Putkey \& Sundaralingam, 1970; Calleri \& Speakman, 1964; Preston \& Stewart, 1970; Chieh \& Palenik, 1971; Veidis, Palenik, Schaffrin \& Trotter, 1969; Aoki, Nagano \& Iitaka, 1971; Freeman, Hearn \& Bugg, 1972). These hydrogen bonds are sometimes shorter than $2 \cdot 5 \AA$, and

Table 6. Bond angles
The standard deviations in bond angles involving only nonhydrogen atoms are about $0 \cdot 4^{\circ}$. The standard deviations in bond angles involving hydrogen atoms are about 4°.

$\mathrm{O}(\mathrm{P} 1)-\mathrm{P}-\mathrm{O}(\mathrm{P} 2)$	109.8°	$\mathrm{H}(41)-\mathrm{C}(4)-\mathrm{C}(5)$	117.4°
$\mathrm{O}(\mathrm{P} 1)-\mathrm{P}-\mathrm{O}(\mathrm{P} 3)$	111.8	$\mathrm{H}(41)-\mathrm{C}(4)-\mathrm{C}(3)$	$122 \cdot 8$
$\mathrm{O}(\mathrm{P} 1)-\mathrm{P}-\mathrm{O}(\mathrm{P} 4)$	$115 \cdot 3$	$\mathrm{H}(51)-\mathrm{C}(5)-\mathrm{C}(6)$	118.5
$\mathrm{O}(\mathrm{P} 2)-\mathrm{P}-\mathrm{O}(\mathrm{P} 3)$	$102 \cdot 6$	$\mathrm{H}(51)-\mathrm{C}(5)-\mathrm{C}(4)$	$121 \cdot 2$
$\mathrm{O}(\mathrm{P} 2)-\mathrm{P}-\mathrm{O}(\mathrm{P} 4)$	108.4	$\mathrm{H}(61)-\mathrm{C}(6)-\mathrm{C}(5)$	121.2
$\mathrm{O}(\mathrm{P} 3)-\mathrm{P}-\mathrm{O}(\mathrm{P} 4)$	108.2	$\mathrm{H}(61)-\mathrm{C}(6)-\mathrm{C}(1)$	118.4
$\mathrm{C}(6)-\mathrm{C}(1)-\mathrm{C}(2)$	118.6	$\mathrm{H}(71)-\mathrm{C}(7)-\mathrm{C}(1)$	$113 \cdot 1$
$\mathrm{C}(6)-\mathrm{C}(1)-\mathrm{C}(7)$	121.5	$\mathrm{H}(71)-\mathrm{C}(7)-\mathrm{O}(11)$	$105 \cdot 2$
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(7)$	119.9	$\mathrm{H}(71)-\mathrm{C}(7)-\mathrm{C}(8)$	112.4
$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{C}(1)$	$120 \cdot 9$	$\mathrm{H}(81)-\mathrm{C}(8)-\mathrm{C}(7)$	111.2
$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{C}(2)$	120.0	$\mathrm{H}(81)-\mathrm{C}(8)-\mathrm{N}(12)$	$105 \cdot 5$
$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{C}(3)$	119.8	$\mathrm{H}(81)-\mathrm{C}(8)-\mathrm{C}(10)$	108.4
$\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{C}(4)$	$120 \cdot 3$	$\mathrm{H}(91)-\mathrm{C}(9)-\mathrm{H}(92)$	108.4
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(1)$	$120 \cdot 5$	$\mathrm{H}(91)-\mathrm{C}(9)-\mathrm{H}(93)$	114.8
$\mathrm{C}(1)-\mathrm{C}(7)-\mathrm{O}(11)$	112.4	$\mathrm{H}(91)-\mathrm{C}(9)-\mathrm{N}(12)$	112.3
$\mathrm{C}(1)-\mathrm{C}(7)-\mathrm{C}(8)$	111.2	H(92)--C(9)-H(93)	96.7
$\mathrm{O}(11)-\mathrm{C}(7)-\mathrm{C}(8)$	107.6	$\mathrm{H}(92)-\mathrm{C}(9)-\mathrm{N}(12)$	111.6
$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{N}(12)$	108.0	$\mathrm{H}(101)-\mathrm{C}(10)-\mathrm{H}(102)$	109.6
$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(10)$	112.9	$\mathrm{H}(101)-\mathrm{C}(10)-\mathrm{H}(103)$	101.7
$\mathrm{N}(12)-\mathrm{C}(8)-\mathrm{C}(10)$	$110 \cdot 6$	$\mathrm{H}(101)-\mathrm{C}(10)-\mathrm{C}(8)$	109.5
$\mathrm{C}(8)-\mathrm{N}(12)-\mathrm{C}(9)$	117.0	$\mathrm{H}(102)-\mathrm{C}(10)-\mathrm{H}(103)$	$107 \cdot 4$
		$\mathrm{H}(102)-\mathrm{C}(10)-\mathrm{C}(8)$	113.4
H(OP2)-O(P2)-P	$107 \cdot 6$	H(103)-C(10)-C(8)	114.6
H(OP3)-O(P3)-P	113.6	$\mathrm{H}(11)-\mathrm{O}(11)-\mathrm{C}(7)$	98.6
$\mathrm{H}(21)-\mathrm{C}(2)-\mathrm{C}(1)$	$120 \cdot 6$	$\mathrm{H}(121)-\mathrm{N}(12)-\mathrm{H}(122)$	111.0
$\mathrm{H}(21)-\mathrm{C}(2)-\mathrm{C}(3)$	118.2	$\mathrm{H}(121)-\mathrm{N}(12)-\mathrm{C}(8)$	108.8
$\mathrm{H}(31)-\mathrm{C}(3)-\mathrm{C}(4)$	$120 \cdot 9$	$\mathrm{H}(121)-\mathrm{N}(12)-\mathrm{C}(9)$	$106 \cdot 5$
$\mathrm{H}(31)-\mathrm{C}(3)-\mathrm{C}(2)$	$119 \cdot 1$	$\mathrm{H}(122)-\mathrm{N}(12)-\mathrm{C}(8)$	112.0
		$\mathrm{H}(122)-\mathrm{N}(12)-\mathrm{C}(9)$	$101 \cdot 2$

evidence of the existence of symmetric phosphatephosphate hydrogen bonds has been presented (Philippot \& Lindqvist, 1971; Putkey \& Sundaralingam, 1970; Calleri \& Speakman, 1964). In the case of dihydrogen phosphate anions, with their two donor sites and multiple acceptor sites, phosphate-phosphate interactions usually lead to continuous arrays of hydrogen-bonded phosphates. We have examined the phosphate interactions in most published crystal structures that contain dihydrogen phosphate anions, and have found no structures in which phosphate-phosphate hydrogen bonding is not present. In all cases, each dihydrogen phosphate forms at least two hydrogen bonds to adjacent phosphates. Hydrogen bonding between phosphates is also an important interaction in aqueous solution (Selvaratnum \& Spiro, 1965). In view of the widespread occurrence of hydrogen bonding between phosphates, it would be surprising if interactions of this type do not occur in biological systems.

Another important feature of this crystal structure is the binding of the phosphate aggregates to the β ethanolamine moiety of ephedrine. As indicated inFig. 4, the ethanolamine group possesses hydrogenbond donor sites that are suitably arranged for binding the phosphate aggregates. The ethanolamine is joined to three phosphates by two hydrogen bonds from the nitrogen atom and one hydrogen bond from the hydroxyl group. These three phosphate ions are hydrogen bonded together. Since the phosphate ions are connected by single hydrogen bonds, this same type of phosphate-ethanolamine binding could also occur with monohydrogen phosphates. The three phosphate ions shown in Fig. 4 are joined by double hydrogen bonds to additional phosphates, resulting in the complete sheet of phosphate ions depicted in Fig. 3. Thus the ethanolamine moiety serves as a site for binding three phosphates ions which, in turn, bind other phosphates.

It is possible that these two features - formation of phosphate aggregates and hydrogen bonding of these aggregates to β-ethanolamine moieties - are important in biological mineralization. At physiological $p \mathrm{H}$ levels, orthophosphate would exist primarily as a mixture of monohydrogen and dihydrogen phosphate anions. Hydrogen bonding between these phosphate an-
ions might lead to phosphate aggregates of sufficient size to initiate the formation of mineral phases. Hydroxylysine, a component of collagen, has been implicated in bone mineralization (Solomons \& Irving, 1958; Schiffman, Martin \& Miller, 1970; Wuthier, Grøn \& Irving, 1964; Glimcher \& Krane, 1968). The β-ethanolamine moiety of hydroxylysine could hydro-

Fig. 2. The crystal structure viewed down the b axis. Thin lines represent hydrogen bonds; donor-acceptor distances are shown.

Fig. 3. Sheets of hydrogen bonded phosphate anions, as viewed down the c axis. The sheets are parallel to the $a b$ plane. The thin lines represent hydrogen bonds.

Table 7. Hydrogen bond distances and angles

Donor atom	Hydrogen atom	Distances			
		Acceptor atom	Donor-acceptor	Hydrogenacceptor	Donor-hydrogenacceptor angle
O (P3)	H(OP3)	$\mathrm{O}(\mathrm{P} 1)$ (a)	2.554 A	1.93 A	175°
O(P2)	$\mathrm{H}(\mathrm{OP} 2)$	O (P4) (b)	2.632	$1 \cdot 60$	164
N (12)	H(122)	$\mathrm{O}(\mathrm{P} 1)$ (b)	2.702	1.81	160
$\mathrm{N}(12)$	H(121)	$\mathrm{O}(\mathrm{P} 4)$ (c)	2.772	1.84	176
O(11)	H(11)	$\mathrm{O}(\mathrm{P} 4)(d)$	$2 \cdot 808$	$2 \cdot 17$	133
		(a) $-x$, (b) $\frac{1}{2}-x$, (c) x, (d) x,	$\begin{array}{r} -z \\ z \\ z \end{array}$		

Fig. 4. Binding of phosphate ions to the β-ethanolamine moiety of ephedrine. The thin lines represent hydrogen bonds. Each of these phosphate ions is joined by two hydrogen bonds to an additional phosphate ion, resulting in the phosphate sheets shown in Fig. 3.
gen bond to phosphate anions, through interactions of the type depicted in Fig. 4. As demonstrated in this crystal structure, a single ethanolamine moiety can hydrogen bond directly to three phosphate anions which can, in turn, hydrogen bond to additional phosphates. Such interactions might result in collagenbound phosphate aggregates that could serve as mineralization nucleation sites.

References

Aoki, K., Nagano, K. \& Iitaka, Y. (1971). Acta Cryst. B27, 11 .
Bergin, R. (1971). Acta Cryst. B27, 381.
Busing, W. R., Martin, K. O. \& Levy, h. A. (1962). ORFLS. Report ORNL-TM-305, Oak Ridge National Laboratory, Tennessee.
Calleri, m. \& Speakman, J. C. (1964). Acta Cryst. 17, 1097.

Chieh, P. C. \& Palenik, G. J. (1971). J. Chem. Soc. (A) p. 576.

Coppens, P. \& Hamilton, W. C. (1970). Acta Cryst. A26, 71.

Freeman, G. R., Hearn, R. A. \& Bugg, C. E. (1972). Acta Cryst. B28, 2906.
Glimcher, M. J., Francois, C. J., Richards, L. \& Krane, S. M. (1964). Biochim. Biophys. Acta, 93, 585.

Glimcher, M. J. \& Krane, S. M. (1964). Biochemistry, 3, 195.

Glimcher, M. J. \& Krane, S. M. (1968). In Treatise on Collagen, Vol. 2, Part B, p. 153. Edited by B. S. Gould. New York: Academic Press.
Huse, Y. \& Iitaka, Y. (1969). Acta Cryst. B25, 498.
IItaka, Y. \& Huse, Y. (1965). Acta Cryst. 18, 110.
International Tables for X-ray Crystallography (1962). Vol. III, pp. 202, 214. Birmingham: Kynoch Press.
Johnson, C. K. (1965). ORTEP. Report ORNL-3794 revised, Oak Ridge National Laboratory, Tennessee.
Philippot, E. \& LindQVist, O. (1971). Acta Chem. Scand. 25, 512.
Preston, H. S. \& Stewart, J. M. (1970). J. Chem. Soc. (D), p. 1142.

Putkey, E. \& Sundaralingam, M. (1970). Acta Cryst. B26, 782.
Schiffman, E., Martin, G. R. \& Miller, E. J. (1970). In Biological Calcification Cellular and Molecular Aspects. Edited by H. Schraer, p. 27. New York: Meredith.
Selvaratnum, M. \& Spiro, M. (1965). Trans. Faraday Soc. 61, 360.
Smith, J. P., Brown, W. E. \& Lehr, J. R. (1955). J. Amer. Chem. Soc. 77, 2728.
Solomons, C. C. \& Irving, J. T. (1958). Biochem. J. 68, 499.

Stewart, R. F., Davidson, E. R. \& Simpson, W. T. (1965). J. Chem. Phys. 42, 3175.

Sundaralingam, M. \& Putkey, E. F. (1970). Acta Cryst. B26, 790.
Veidis, M. V., Palenik, G. J., Schaffrin, R. \& Trotter, J. (1969). J. Chem. Soc. (A), p. 2659.

Wehe, D. J., Busing, W. R. \& Levy, H. A. (1962). ORABS. Report ORNL-TM-229, Oak Ridge National Laboratory, Tennessee.
Wilson, A. J. C. (1942). Nature, Lond. 150, 152.
Wuthier, R. E., Grøn, R. \& Irving, J. J. (1964). Biochem. J. 92, 205.

Zachariasen, W. H. (1963). Acta Cryst. 16, 1139.

